

(HYDAC) INTERNATIONAL

Betamicron[®] Filter Elements BN4HC/BH4HC up to 210 bar, filtration rating 3, 5, 6, 10, 20, 25 µm

1. BETAMICRON® ELEMENT

1.1 DESCRIPTION

The 3-stage structure of Betamicron[®] filter elements ensures the maximum contamination retention and filtration performance. An additional drainage layer directs the fluid flow with optimal efficiency, achieving particularly favourable $\Delta p/Q$ characteristics. An innovative bonding process used for the longitudinal seam guarantees that the cut ends of the mesh pack remain completely sealed even under high load variations. This eliminates the possibility of particles crossing from the contaminated to the clean side.

To prevent the formation of zinc soap, which occurs mainly in conjunction with water-based fluids (HFA / HFC) and bio oils, no components containing zinc are utilized. The metal tube which forms a stable core inside the element is constructed as a spiral lock seam tube. This provides consistent stability and a significant reduction in element weight. The pleated filter mesh pack is encased in a stable outer wrap This wrap distributes the incoming fluid evenly over the mesh pack. In addition the mesh pack is not directly exposed to the flow, and this protects it from pulsating flows. In this way, the element achieves extremely high fatigue strength values. Moreover, the mesh pack is protected from mechanical damage.

1.2 GENERAL DATA

Collapse stability	BN4HC: 20 bar
	BH4HC: 210 bar
Temperature range	-30 °C to +100 °C
	For sealing material FPM to -10 °C
Flow direction	From outside to inside
Filtration rating	3, 5, 6, 10, 20, 25 µm
Bypass cracking pressure	Pressure filter element ("D "): Without bypass valve as standard Pressure filter element to DIN 24550 ("DN "): Without bypass valve as standard Pressure filter element for MFX filter ("MX "): standard 3.5 bar
	Return line filter element to DIN 24550 ("RN "): standard 3.5 bar
	(others on request)
Category of filter element	Single use element

1.3 STAT-FREE[®] TECHNOLOGY OPTIONAL

By completely revising the materials used, e.g. through the use of conductive plastics, fully dischargecapable filter elements are the result. Electrical charging of the filter elements during operation has therefore been reduced to a negligible level. The risks of sudden sparking and the subsequent formation of soot or sludge in the oil are therefore reliably eliminated.

With the new Stat-Free® filter

elements, HYDAC has for the first time succeeded in combining excellent electrostatic characteristics with filtration performance. Unprecedented low charge generation in the filter element and in the system fluid is achieved with a new type of filter mesh

pack and element design.

1.4 OUTER WRAP PRINTED WITH CUSTOMER LOGO

Since the outer wrap can be printed with the customer logo, it also acts as

an advertising medium for the OEM and guarantees security of the spares business. At the same time, the user can be certain of obtaining an original spare part. Particular benefit: the logo remains perfectly

legible even in the contaminated condition.

1.5 COMPATIBILITY WITH HYDRAULIC FLUIDS TO ISO 2943

- Hydraulic oils H to HLPD DIN 51524
- Lubrication oils DIN 51517, API, ACEA, DIN 51515, ISO 6743
- Compressor oils DIN 51506
- Biodegradable operating fluids VDMA 24568 HETG, HEES, HEPG
- Fire-resistant fluids HFA, HFB, HFC and HFD
- Operating fluids with high water content (>50% water content) on request

E 7.210.2/11.16

HYDAC 1

2.	Μ	0	D	E	L	C	0	D	Ε	

2.1 MODEL CODE FOR STANDARD PRESSURE FILTER ELEMENTS

(Can be used in the following filters: DFM, LPF, LF, LFF, MDF, HDF, HDFF, DF, DFF, DFFX, FLND, FMND, DFDK, DF... MHA, DF...MHE, DF...MA, DF...MP, DFZ, DF...QE, DFP, DFPF)

0030, 0035, 0055, 0060, 0075, 0095, 0110, 0140, 0160, 0240, 0260, 0280, 0300, 0330, 0450, 0500, 0650, 0660,0900, 0990, 1320, 1500

Type D

Pressure filter element

Filtration rating in µm 003, 005, 010, 020

Filter material of element BH4HC Collapse stability up to 210 bar

Supplementary details

FPM (Viton) seal SFREE Stat-Free® element technology

2.2 MODEL CODE FOR PRESSURE FILTER ELEMENTS TO DIN 24550

(Can be used in the following filters: FLN, LFN, LFNF, DFN, DFNF, FLND, FMND, DFDKN)

0100 DN 010 BN4HC /-V

0100 PN 010 BN/HC /-V

0660 D 010 BH4HC /-V

Size 0040, 0063, 0100, 0160, 0250, 0400

Type DN Pressure filter element to DIN 24550

Filtration rating in µm

003, 006, 010, 025

Filter material of element

BN4HC Collapse stability up to 20 bar BH4HC Collapse stability up to 210 bar

Supplementary details V FPM (Viton) seal

SFREE Stat-Free[®] element technology

2.3 MODEL CODE FOR PRESSURE FILTER ELEMENTS IN MFX FILTERS

	<u>0100</u>	<u>MX 01</u>	0 <u>BN</u>	<u>4HC /-V</u>
Size				
0100, 0200				
Type MX Pressure filter element for MFX filter				
MX Pressure filter element for MFX filter				
Filtration rating in µm				
003, 005, 010, 020				
Filter material of element				
BN4HC Collapse stability up to 20 bar				
Supplementary details				
V FKM (Viton) seal				

2.4 MODEL CODE FOR RETURN LINE FILTER ELEMENTS TO DIN 24550

(Can be used in the following filters: RFN, RFND, RFLN, RFLND)

	<u> </u>	
Size		
0040, 0063, 0100, 0160, 0250, 0400, 0630, 1000		
Type RN Return line filter element to DIN 24550		
RN Return line filter element to DIN 24550		
Filtration rating in µm		
003, 006, 010, 025		
Filter material of element		
BN4HC Collapse stability up to 20 bar		
Supplementary details		
V FPM (Viton) seal		
SFREE Stat-Free® element technology		

E 7.210.2/11.16 2 HYDAC

3. FILTER CALCULATION / SIZING

The total pressure drop of a filter at a certain flow rate Q is the sum of the housing Δp and the element Δp and is calculated as follows:

$$\begin{aligned} \Delta p_{\text{total}} &= \Delta p_{\text{housing}} + \Delta p_{\text{element}} \\ \Delta p_{\text{housing}} &= \text{see housing curve in the} \\ \text{relevant filter brochure} \\ \Delta p_{\text{element}} &= Q \cdot \frac{SK^*}{1000} \cdot \frac{\text{viscosity}}{30} \end{aligned}$$

$$\Delta p_{element} = Q \cdot \frac{SK^*}{1000} \cdot \frac{VISC}{3}$$
(*see point 4.1)

4. ELEMENT **CHARACTERISTICS**

4.1 GRADIENT COEFFICIENTS FOR FILTER ELEMENTS

The gradient coefficients in mbar/ (I/min) apply to mineral oils with a kinematic viscosity of 30 mm²/s. The pressure drop changes proportionally to the change in viscosity.

			nt "D"B	
Size	3 µm	5 µm	10 µm	20 µm
0030	91.2	50.7	36.3	19.0
0035	47.8	28.1	16.8	10.5
0055	24.2	14.2	8.5	5.3
0060	58.6	32.6	18.1	12.2
0110	25.4	14.9	8.9	5.6
0140	19.9	11.3	8.1	4.3
0160	16.8	10.4	5.9	4.4
0240	10.6	6.8	3.9	2.9
0260	8.1	4.8	3.3	1.9
0280	5.7	3.4	1.8	1.6
0300	16.0	8.9	7.1	3.3
0330	7.7	4.5	2.8	2.0
0350	7.8	4.3	3.4	1.6
			_	
0500	4.2	2.6	1.5	1.2
0650	4.7	2.6	2.1	1.0
0660	3.3	1.9	1.0	0.9
0900	3.5	2.0	1.6	0.7
0990	2.2	1.3	0.8	0.6
1320	1.6	1.0	0.6	0.4
1500	1.4	0.8	0.6	0.5
			it "DN"E	
Size	3 µm	6 µm	10 µm	25 µm
0040	23.9	14.9	8.6	6.6
0063	16.3	9.9	6.0	4.6
0100	11.9	6.6	4.0	3.2
0160	7.9	5.1	3.4	2.6
0250	5.1	3.2	2.1	1.8
0400	3.2	2.0	1.3	1.0
Dree	a a una filta		t "DN"E	
Size		6 µm		
SIZE	3 µm		10 µm 16.4	25 µm 10.9
0040				10.9
0040	40.4	24.8		
0063	29.0	18.2	11.7	7.6
0063 0100	29.0 19.0	18.2 11.7	11.7 7.7	5.3
0063 0100 0160	29.0 19.0 8.0	18.2 11.7 5.1	11.7 7.7 3.8	5.3 2.5
0063 0100 0160 0250	29.0 19.0 8.0 5.4	18.2 11.7	11.7 7.7 3.8 2.8	5.3
0063 0100 0160	29.0 19.0 8.0	18.2 11.7 5.1	11.7 7.7 3.8	5.3 2.5
0063 0100 0160 0250 0400	29.0 19.0 8.0 5.4 3.4	18.2 11.7 5.1 3.4 2.1	11.7 7.7 3.8 2.8 1.7	5.3 2.5 1.9 1.1
0063 0100 0160 0250 0400 Pres	29.0 19.0 8.0 5.4 3.4 ssure filte	18.2 11.7 5.1 3.4 2.1 er elemen	11.7 7.7 3.8 2.8 1.7 t "MX"E	5.3 2.5 1.9 1.1 8N4HC
0063 0100 0160 0250 0400 Pres Size	29.0 19.0 8.0 5.4 3.4 ssure filte 3 µm	18.2 11.7 5.1 3.4 2.1 er elemen 5 μm	11.7 7.7 3.8 2.8 1.7 t "MX"Ε 10 μm	5.3 2.5 1.9 1.1 ΒΝ4ΗC 20 μm
0063 0100 0160 0250 0400 Pres Size 0100	29.0 19.0 8.0 5.4 3.4 ssure filte 3 µm 12.0	18.2 11.7 5.1 3.4 2.1 er elemen 5 μm 9.0	11.7 7.7 3.8 2.8 1.7 t "MX"Ε 10 μm 4.6	5.3 2.5 1.9 1.1 8N4HC 20 μm 3.4
0063 0100 0160 0250 0400 Pres Size	29.0 19.0 8.0 5.4 3.4 ssure filte 3 µm	18.2 11.7 5.1 3.4 2.1 er elemen 5 μm	11.7 7.7 3.8 2.8 1.7 t "MX"Ε 10 μm	5.3 2.5 1.9 1.1 ΒΝ4ΗC 20 μm
0063 0100 0250 0400 Pres Size 0100 0200	29.0 19.0 8.0 5.4 3.4 ssure filte 3 μm 12.0 7.0	18.2 11.7 5.1 3.4 2.1 er elemen 5 μm 9.0 5.3	11.7 7.7 3.8 2.8 1.7 t "MX"Ε 10 μm 4.6	5.3 2.5 1.9 1.1 3.4 2.0
0063 0100 0250 0400 Pres Size 0100 0200	29.0 19.0 8.0 5.4 3.4 ssure filte 3 μm 12.0 7.0	18.2 11.7 5.1 3.4 2.1 er elemen 5 μm 9.0 5.3	11.7 7.7 3.8 2.8 1.7 t "MX"Ε 10 μm 4.6 2.7	5.3 2.5 1.9 1.1 3.4 2.0
0063 0100 0160 0250 0400 Pres Size 0100 0200 Retu	29.0 19.0 8.0 5.4 3.4 3 μm 12.0 7.0 rn line fil 3 μm	18.2 11.7 5.1 3.4 2.1 er elemen 5 μm 9.0 5.3 ter eleme	11.7 7.7 3.8 2.8 1.7 t "MX"Ε 10 μm 4.6 2.7 nt "RN"	5.3 2.5 1.9 1.1 3N4HC 20 μm 3.4 2.0 BN4HC
0063 0100 0250 0400 Pres Size 0100 0200 Retu Size 0040	29.0 19.0 8.0 5.4 3.4 3 μm 12.0 7.0 rn line fil 3 μm 14.2	18.2 11.7 5.1 3.4 2.1 er elemen 5.0 5.3 ter elemen 6 µm 7.8	11.7 7.7 3.8 2.8 1.7 t "MX"E 10 μm 4.6 2.7 nt "RN" 10 μm 4.8	5.3 2.5 1.9 1.1 3N4HC 20 µm 3.4 2.0 BN4HC 25 µm 2.6
0063 0100 0250 0400 Pres Size 0100 0200 Retu Size 0040 0063	29.0 19.0 8.0 5.4 3.4 ssure filt 3 μm 12.0 7.0 rn line fil 3 μm 14.2 9.5	18.2 11.7 5.1 3.4 2.1 er elemen 5 μm 9.0 5.3 ter elemen 6 μm 7.8 5.2	11.7 7.7 3.8 2.8 1.7 t "MX"Ε 10 μm 4.6 2.7 nt "RN" 10 μm 4.8 3.4	5.3 2.5 1.9 1.1 20 µm 3.4 2.0 BN4HC 25 µm 2.6 1.8
0063 0100 0160 0250 0400 Pres Size 0100 0200 Retu Size 0040 0063 0100	29.0 19.0 8.0 5.4 3.4 ssure filts 3 μm 12.0 7.0 rn line fil 3 μm 14.2 9.5 6.8	18.2 11.7 5.1 3.4 2.1 ar elemen 5 μm 9.0 5.3 ter eleme 6 μm 7.8 5.2 3.3	11.7 7.7 3.8 2.8 1.7 t "MX"E 10 µm 4.6 2.7 t "RN" 10 µm 4.8 3.4 2.3	5.3 2.5 1.9 1.1 3N4HC 20 µm 3.4 2.0 BN4HC 25 µm 2.6 1.8 1.2
0063 0100 0250 0400 Pres Size 0100 0200 Retu Size 0040 0063 0100 0160	29.0 19.0 8.0 5.4 3.4 ssure filte 3 µm 12.0 7.0 rn line fil 3 µm 14.2 9.5 6.8 3.6	$\begin{array}{c} 18.2 \\ 11.7 \\ 5.1 \\ 3.4 \\ 2.1 \\ \hline \\ \textbf{r} \ \textbf{elemen} \\ \textbf{9.0} \\ 5.3 \\ \hline \\ \textbf{ter \ elemen} \\ \textbf{6} \ \mu\text{m} \\ \textbf{7.8} \\ \textbf{5.2} \\ \textbf{3.3} \\ 1.8 \\ \end{array}$	11.7 7.7 3.8 2.8 1.7 t "MX"E 10 µm 4.6 2.7 t "RN" 10 µm 4.8 3.4 2.3 1.2	5.3 2.5 1.9 1.1 N4HC 20 µm 3.4 2.0 BN4HC 2.6 1.8 1.2 0.5
0063 0100 0160 0250 0400 Pres Size 0100 0200 Retu Size 0040 0063 0100 0160 0250	29.0 19.0 8.0 5.4 3.4 ssure filt 3 μm 12.0 7.0 rn line fil 3 μm 14.2 9.5 6.8 3.6 2.8	18.2 11.7 5.1 3.4 2.1 er elemen 5 μm 9.0 5.3 ter elemen 6 μm 7.8 5.2 3.3 1.8 1.4	11.7 7.7 3.8 2.8 1.7 1.7 10 μm 4.6 2.7 nt "RN" 10 μm 4.8 3.4 2.3 1.2 0.9	5.3 2.5 1.9 1.1 ΣΝ4ΗC 20 μm 3.4 2.0 ΒΝ4ΗC 2.6 1.8 1.2 0.5 0.4
0063 0100 0160 0250 0400 Pres Size 0100 0200 Retu Size 0040 0063 0100 0160 0250 0400	29.0 19.0 8.0 5.4 3.4 ssure filt 3 μm 12.0 7.0 rn line fil 3 μm 14.2 9.5 6.8 3.6 2.8 2.2	$\begin{array}{c} 18.2 \\ 11.7 \\ 5.1 \\ 3.4 \\ 2.1 \\ \hline \\ er \ elemen \\ 5.3 \\ \hline \\ ter \ elemen \\ 6 \ \mu m \\ 7.8 \\ 5.2 \\ 3.3 \\ 1.8 \\ 1.4 \\ 1.6 \\ \end{array}$	11.7 7.7 3.8 2.8 1.7 t "MX"E 10 μm 4.6 2.7 nt "RN" 10 μm 4.8 3.4 2.3 1.2 0.9 1.3	5.3 2.5 1.9 1.1 3.4 2.0 BN4HC 25 µm 2.6 1.8 1.2 0.5 0.4 1.0
0063 0100 0160 0250 0400 Pres Size 0100 0200 Retu Size 0040 0063 0100 0160 0250	29.0 19.0 8.0 5.4 3.4 ssure filt 3 μm 12.0 7.0 rn line fil 3 μm 14.2 9.5 6.8 3.6 2.8	18.2 11.7 5.1 3.4 2.1 er elemen 5 μm 9.0 5.3 ter elemen 6 μm 7.8 5.2 3.3 1.8 1.4	11.7 7.7 3.8 2.8 1.7 1.7 10 μm 4.6 2.7 nt "RN" 10 μm 4.8 3.4 2.3 1.2 0.9	5.3 2.5 1.9 1.1 ΣΝ4ΗC 20 μm 3.4 2.0 ΒΝ4ΗC 2.6 1.8 1.2 0.5 0.4

4.2 CONTAMINATION RETENTION CAPACITY IN G

The contamination retention and particle filtration performance of an element are established in the multipass test to ISO 16889. This procedure with its precisely defined test conditions and a standard test dust (ISO MTD) enables the performance data of different elements to be compared.

	compar			
			nt "D"B	
Size	3 µm	5 µm	10 µm	20 µm
0030	3.0	2.9	3.2	3.7
0035	5.3	5.2	5.8	6.6
0055	10.5	10.3	11.5	13.0
0060	4.6	4.5	5.0	5.7
0110	10.1	9.9	10.9	12.4
0140	13.3	13.0	14.3	16.3
0160	12.9	12.6	13.9	15.9
0240	21.6	21.1	23.2	26.5
0260	48.1	47.1	51.8	59.1
0280	48.1	47.1	51.8	59.1
0300	17.0	16.6	18.3	20.9
0330	34.6	33.9	37.2	42.5
0450	35.0	34.2	37.6	42.9
0500	57.5	56.3	61.8	70.5
0650	58.3	57.1	62.8	71.6
0660	76.8	75.2	82.6	94.3
0900	77.3	75.7	83.1	94.8
0990	111.8	109.4	120.2	137.2
1320	153.8	150.7	165.5	188.8
1500	164.5	161.1	177.0	202.0
Pres	sure filte	er elemen	t "DN"E	3N4HC
Size	3 µm	6 µm	10 µm	25 µm
0040	5.2	5.6	6.3	7.0
0063	7.3	7.9	9.2	11.2
0100	15.4	16.5	18.6	20.6
0160	27.5	29.3	33.1	36.7
0250	38.1	41.7	48.6	59.0
0400	76.2	81.3	91.4	101.5
Bros	curo filte	or olomon	t "DN"E	
Size	3 µm	6 µm	10 µm	25 µm
0040	4.1	4.4	5.2	6.2
0063	7.3	7.9	9.2	11.2
0100	12.2	13.2	15.5	18.9
0160	21.8	23.9	27.8	33.8
0250	38.1	41.7	48.6	59.0
0400	63.6	69.5	81.0	98.3
0400	105.0	03.5	101.0	190.5
			t "MX"E	
Size	3 µm	5 µm	10 µm	20 µm
0100	24.2	27.8	27.8	28.8
0200	41.3	47.4	47.4	49.4
Retu	rn line fil	ter eleme	nt "RN"	BN4HC
Size	3 µm	6 µm	10 µm	25 µm
0040	7.1	8.0	8.9	10.6
0063	13.0	14.7	16.3	19.6
0100	22.0	24.7	27.5	33.0
0160	36.2	40.7	45.3	54.2
0250	61.4	69.1	76.8	92.1
0400	88.2	99.2	110.2	132.3
0630	148.6	167.3	185.8	222.9
1000	151.8	170.8	189.8	227.8
curve (Quic	s, pleas	e see Fi	pass val Iter Elen chure no	nent

HYDAC 3

HYDAC Filtertechnik GmbH

D-66280 Sulzbach/Saar

Internet: www.hydac.com

E-Mail: filter@hydac.com

Tel.: 0 68 97 / 509-01 Fax: 0 68 97 / 509-300

Industriegebiet

					 												_			 	
-	_	_								_	_	_								 	
_	_	_																		 	
		_			 															 	
-																					
-				_	 _	_			_								_			 	
-	_	_								_	_									 	
	_										_									 	
				_													_			 	
	_									_							_			 	
_	_	_									_									 	
-	_	_								_	_						_			 	
	_	_								_	_						_			 	
	_				 															 	
		_																			
-				_		_											_			 	
	_				 						_						_			 	
_	_	_								_							_			 	
	_	_			 															 	
												-									
-	-											-					_			_	
	_	_									_	_				_				 \rightarrow	
1																				\neg	
-	-	-									-	-				-				\rightarrow	

NOTE

The information in this brochure relates to the operating conditions and applications described.

For applications or operating conditions not described, please contact the relevant

technical department. Subject to technical modifications.

Subject to technical mounications.

4 HYDAC

E 7.210.2/11.16